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Fig. 1. We present WorldPrompter, a method that generates traversable environments from a text prompt alone (above). Our method first generates a spatially
coherent 360° video capture (top) that travels through a static environment described by the prompt. Next, we elevate generated video capture into a 3D
Gaussian Splat (middle), enabling free navigation within a 3D scene using a virtual perspective camera to generate novel views (bottom).

Generating 3D scenes is still a challenging task due to the lack of readily
available scene data. Most existing methods only produce partial scenes
and provide limited navigational freedom. We introduce a practical and
scalable solution that uses 360° video as an intermediate scene representa-
tion, capturing the full-scene context and ensuring consistent visual content
throughout the generation. We propose WorldPrompter, a generative pipeline
that synthesizes traversable 3D scenes from text prompts. WorldPrompter
incorporates a conditional 360° panoramic video generator, capable of pro-
ducing a 128-frame video that simulates a person walking through and
capturing a virtual environment. The resulting video is then reconstructed
as Gaussian splats by a fast feedforward 3D reconstructor, enabling a true
walkable experience within the 3D scene. Experiments demonstrate that our
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panoramic video generation model, trained with a mix of image and video
data, achieves convincing spatial and temporal consistency for static scenes.
This is validated by an average COLMAP matching rate of 94.6%, allowing
for high-quality panoramic Gaussian splat reconstruction and improved
navigation throughout the scene. Qualitative and quantitative results also
show it outperforms the state-of-the-art 360° video generators and 3D scene
generation models.

Additional Key Words and Phrases: Diffusion Models, 360° Video Generative
Model, 3D Reconstruction

1 Introduction

Scene-level 3D generation has attracted increasing research interest
in recent years. The limited availability of data generally hinders
direct 3D scene generation [Liu et al. 2024a], making it difficult for
methods to generalize to realistic scene synthesis effectively. To
address this challenge, recent approaches typically rely on an image
diffusion model to create realistic scene views. For example, methods
like RealmDreamer [Shriram et al. 2025] and LucidDreamer [Chung
et al. 2023] can generate Gaussian Splatting (GS) 3D scenes from text
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prompts. They rely on single-view diffusion models and monocular
depth estimation to generate scenes progressively from one view
to another by 2D inpainting. However, the 3D scenes created by
these methods are confined to a limited viewable area and are not
freely traversable. This constraint differentiates these approaches
from a "complete” scene generation that offers a navigable virtual
world, similar to what is found in interactive video games. Recent
works [Yang et al. 2024; Zhou et al. 2024] attempt to bridge the gap
between partial and full scene generation by leveraging panoramic
images. However, these methods still rely on outpainting to fill in
missing regions, which inherently limits the navigable range and
often leads to distortions during viewpoint transitions.

More importantly, we observe that scenes generated via these
outpainting-based approaches frequently suffer from distortion and
inconsistencies in visual content across the scene. We hypothesize
that these issues stem from the commonly used progressive outpaint-
ing approach, which independently synthesizes new content based
on the previously generated content. However, this assumption is
flawed, as visual content is globally interconnected and consistent
rather than strictly sequential [Tian et al. 2024]. As a result, while
their generated scenes may appear locally plausible, they exhibit
significant global distortions (Fig. 7).

In this paper, instead of synthesizing a scene in a view-by-view
fashion, we aim to generate a maximally navigable scene in a single
pass, ensuring undistorted global visual content synthesis. Although
scenes can be represented in various formats, such as meshes or
point clouds, data in these formats is often limited and difficult to
scale. Drawing inspiration from conventional 3D capture methods
and recent advancements in video generation models ([Blattmann
et al. 2023a; Polyak et al. 2024; Zheng et al. 2024]), we propose using
videos as an intermediate representation to model complete 3D
environments. Modeling scenes using video captures provides a
scalable approach for creating training data, enabling generative
models to achieve strong generalization capabilities. To validate this
idea, we propose WorldPrompter, a generative pipeline that produces
a navigable 3D scene from text prompts. Specifically, we train a
diffusion model to generate videos traversing the environment based
on text prompts. Moreover, instead of synthesizing captures from
perspective cameras, we leverage panoramic cameras that directly
capture the entire surroundings of an environment, providing 360°
viewpoints that are ideal for our application.

WorldPrompter is a two-stage pipeline composed of a 360° panoramic

video generation model and a 3D reconstruction step to generate
the final 3D Gaussians, a summary of which is shown in Fig. 1. The
text-conditioned panoramic video generation model is trained to
generate a 360° panoramic video that simulates a person walking
through an environment while holding a panoramic camera to cap-
ture the scene. To train the video generator, we collected a dataset
comprising approximately 1,700 panoramic videos and a panorama
image dataset containing more than 200,000 high-quality panoramic
in-the-wild captures. To enhance the generative capability of our
method, we fine-tuned a Diffusion Transformer (DiT)-based video
generator on our dataset to produce 10.6-second 360° panoramic
videos (128 frames at 12 fps). We introduce a masked diffusion loss
to ensure a clean panoramic capture sequence free from the person
holding the camera, ready for subsequent reconstruction purposes.

From the generated videos, we extract panoramic frames and project
them from their original spherical coordinates onto the image plane
to obtain perspective images from multiple viewpoints throughout
the scene. The reconstruction step then builds the final 3D Gaussian
Splat (3DGS) scene from these cropped images using a fast feed-
forward reconstruction model [Ziwen et al. 2024]. The resulting
scene allows users to navigate freely within a virtual environment,
beyond the original video camera path.

We demonstrate that our 360° video generation model—trained
on a mixture of image and video data—achieves state-of-the-art
performance in temporal consistency and visual quality. The high
consistency of the views, confirmed by a matching rate of up to 94.5%
using COLMAP [Schoénberger and Frahm 2016], ensures that the
videos can be reliably used as proxies for 3D scene generation. This
results in a traversable, 360° viewable environment with globally
coherent visual content. We demonstrate that our generated scene
allows longer navigation range and offers superior global visual
coherence and quality compared to prior art. We highlight our
contributions as follows:

e We propose leveraging panoramic capture videos as an inter-
mediate 3D scene representation. We found it is a practical
solution for scaling up training data for high-quality photo-
realistic scene synthesis.

o We present WorldPrompter, a practical generative text-to-
scene pipeline that synthesizes a traversable 3D scene with
strong global visual coherence.

e We introduce a high-quality 360° panoramic video genera-
tion model, where the proposed mixed datasets and masked
diffusion loss play a critical role in achieving artifact-free
and generalizable static 360° scene generation.

2 Related Work
2.1 Panoramic Image and Video Generation

In computer graphics, 360° panoramas—often called IBLs or envi-
ronment maps—are widely used to represent distant lighting and
environments [Debevec and Malik 2023]. Numerous studies esti-
mate lighting as High Dynamic Range (HDR) panoramas from input
photos [Dastjerdi et al. 2023; Weber et al. 2022; Zhan et al. 2021].
However, the resolution of these panoramas is often limited, mak-
ing them suitable for light representation but insufficient for 3D
reconstruction.

Advancements in diffusion models have made high-resolution
image synthesis possible [Esser et al. 2024; Rombach et al. 2022].
Panorama generation also benefits from the use of diffusion mod-
els. For example, Text2Light [Chen et al. 2022] generates 4K HDR
panoramas via text-driven low-resolution generation and super-
resolution inverse tone mapping. MVDiffusion [Tang et al. 2023] cre-
ates panoramas by stitching consistent multi-view images generated
from text prompts using attention layers. PanFusion [Zhang et al.
2024b] employs a dual-branch diffusion model with equirectangular-
Perspective Projection Attention (EPPA) to improve consistency and
control across panorama and perspective domains. DiffPano [Ye et al.
2024a] fine-tunes Stable Diffusion [Rombach et al. 2022] using LoRA
[Hu et al. 2021] to generate panorama images, and with a Spherical
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Fig. 2. Overview of WorldPrompter. (top) We train a text-to-video model on a mix of 360° videos and images depicting in-the-wild environments. As it is

challenging to avoid the person and camera equipment being visible in the video capture, we mask these elements out of the frame using a pretrained image
segmentation model [Adobe 2025], and obtain the prompts from the video frames using LLaVA [Liu et al. 2023b] for the videos, and BLIP-2 [Li et al. 2023a] for
images. (bottom) At inference time, a user supplies a text prompt to our text-to-video model, which produces a “walk-through” video of the scene, which we
reconstruct into a 3D Gaussian splat representation using Long-LRM [Ziwen et al. 2024].

Epipolar-Aware Attention Module, it enables multi-view panorama
generation.

Diffusion models have also demonstrated their potential in video
generation [Blattmann et al. 2023a,b]. Diffusion Transformers [Pee-
bles and Xie 2023] offer a more versatile method for modeling high-
dimensional data, making them particularly well-suited for video
generation [Brooks et al. 2024]. For 360° video generation, Wang et al.
propose 360DVD for generating 360° panoramic videos from text
prompts and motion conditions, where they leverage a lightweight
360-Adapter to finetune the Stable Diffusion [Rombach et al. 2022]
text-to-image model. However, their model is limited to generating
only 16 frames, whereas our 360° video generation model produces
significantly more frames with superior temporal consistency.

2.2 3D Neural Representation and Reconstruction

3D reconstruction and representation is an extensively studied field.
While mesh-based methods [Kazhdan et al. 2006] and point-based
methods [Qi et al. 2017] have been extensively explored, they are
limited in the quality of their results. In contrast, neural represen-
tations offer a flexible way to reconstruct 3D data. For instance,
Neural Radiance Fields (NeRF) [Mildenhall et al. 2020] introduces
a novel way to represent 3D scenes by encoding volumetric scene
information as a continuous function parameterized by a neural
network, which inspired many follow-up works [Barron et al. 2022,
2023; Miller et al. 2022] that optimize efficiency, quality, and ren-
dering speed. However, the MLP-based paradigm requires training
a distinct model per scene, making reconstruction time-consuming.
Additionally, rendering views involves model queries, creating a
bottleneck for real-time applications. 3D Gaussian Splatting (3DGS)
[Kerbl et al. 2023] introduces a memory-efficient and low-overhead
3D implicit representation using Gaussians derived from Structure-
from-Motion (SfM) points. By combining anisotropic covariance

optimization with a fast visibility-aware rendering algorithm, 3DGS
enables efficient scene representation, high-quality real-time ren-
dering, and has quickly emerged as a new paradigm in neural re-
construction [Charatan et al. 2024; Gao et al. 2024; Jiang et al. 2024;
Wau et al. 2024; Ye et al. 2024b]. Nevertheless, 3DGS still requires an
optimization process, which can be costly for larger scenes. Recent
advances such as Large Reconstruction Models (LRMs) [Wang et al.
2023; Wei et al. 2024; Xie et al. 2024; Zhang et al. 2024a; Ziwen
et al. 2024] target scene reconstruction with a single feed-forward
evaluation during inference. They achieve a reconstruction quality
comparable to optimization-based methods while significantly im-
proving their efficiency. In our scene generation pipeline, we also
utilize this state-of-the-art feed-forward reconstruction approach
for long-sequence reconstruction, achieving fast reconstruction.

2.3 3D Scene Generation

3D generation has emerged as a prominent focus in generative
modeling. Given the scarcity of high-quality 3D data, recent works
usually leverage intermediate representations, such as multi-view
images [Hu et al. 2024; Li et al. 2023b; Liu et al. 2024b, 2023c; Shi
et al. 2024; Voleti et al. 2024] and videos [Chen et al. 2024; Han
et al. 2024; Parthasarathy et al. 2024], to improve the quality and
efficiency of their reconstructions. Many studies have explored gen-
erating 3D objects in various formats, including Gaussian splats and
meshes. For instance, Instant3D [Li et al. 2023b] accelerates 3D asset
creation from text prompts by combining sparse-view generation
with transformer-based reconstruction. Similarly, MVDream [Shi
et al. 2024] improves consistency through multi-view diffusion by
integrating 2D and 3D data. One-2-3-45 [Liu et al. 2024b] simpli-
fies single-image 3D reconstruction, enabling view-consistent mesh
generation.
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Scene-level generation, however, is a more challenging task be-
cause it requires more observations to achieve comprehensive view
coverage. Typically, 3D scene generation methods employ progres-
sive pipelines [Chung et al. 2023; Hollein et al. 2023; Ouyang et al.
2023]: anchor cameras are first selected to generate text-aligned
2D images and corresponding depth maps, followed by a neural
reconstruction process to build the initial 3D structure. This pro-
cess is iteratively repeated to expand scene coverage by generating
additional camera views and inpainting missing regions. However,
such methods often suffer from prolonged generation times and
incomplete coverage. Other studies have explored interactive and
layout-guided approaches for 3D scene generation. Systems like
WonderWorld [Yu et al. 2024a] provide user-friendly interfaces for
scene customization, while Director3D [Li et al. 2024a] facilitates
real-world scene creation with adaptive camera trajectories. An-
other potential limitation of this family of methods, as discussed
in Sec. 1, is the lack of guaranteed global visual coherence, often
resulting in distorted scene layouts and object shapes. Most recent
literature has discovered the potential of video generation for consis-
tent scene-level generation. VideoScene [Wang et al. 2025] leverages
the temporal consistency in video diffusion models to generate novel
views for 3D reconstruction by interpolating two input keyframes.
Yu et al. and Wu et al. explore explicitly reconstructing a 3D point
cloud as spatial memory for consistent video generation.

The closest method to ours is DreamScene360 [Zhou et al. 2024],
which generates 3D scenes from text prompts using a single panorama
image, along with depth estimation and Gaussian Splats optimiza-
tion. However, while the resulting scene supports 360° viewing,
it suffers from a limited movable range. LayerPano3D [Yang et al.
2024] offers slightly increased navigational range by generating lay-
ered panoramas, but the content in the additional layers may suffer
from distortion. ODIN [Wallingford et al. 2024] proposed learning
3D from 360° videos. However, their approach extracts only cropped
views from videos to perform image-to-image style novel view syn-
thesis, underutilizing the full potential of 360° videos. As a result,
ODIN fails to model a complete 3D world and can only generate
partial scenes. Beyond 3D, 4K4DGen [Li et al. 2024b], introduces
panorama-to-4D generation but still remains limited in terms of
traversable area.

In contrast to these approaches, our model introduces 360° videos
as an explicit 3D scene proxy in the generation task, offering greater
data scalability and ensuring strong visual coherence alongside com-
prehensive view coverage, ultimately enabling a realistic navigation
experience.

3 WorldPrompter
3.1 Overview

We show that 360° video capture serves as an effective, all-you-need
proxy for 3D scene generation, as validated by the WorldPrompter
pipeline. It synthesizes a traversable, 360° viewable 3D scene in two
stages: generation and reconstruction. The generation stage leverages
a text-conditioned 360° panoramic video diffusion model to generate
a 10.6-second panoramic capture video for a target scene, simulating
someone holding the camera and walking through the environment.
Later, the reconstruction stage runs COLMAP [Schénberger and

Frahm 2016] to estimate precise camera poses from perspective
crops of the generated videos and builds a navigable 3DGS using
Long-LRM [Ziwen et al. 2024] with the calibrated camera poses. The
generated panoramic video features rich details and geometrically
consistent visual details over the entire scene, ensuring high-quality
reconstruction and yielding appealing novel views in the traversable
scene.

3.2 Video Generator for 360° Panoramic Captures

Training a generative model for 360° videos from scratch is chal-
lenging; therefore, we start with an existing video generator. We
leverage a pretrained text-to-video diffusion model as backbone,
and fine-tune it using panoramic data.

Specifically, our model’s backbone architecture fp is based on
Diffusion Transformers [Peebles and Xie 2023]. Typically, in latent
DiT models, a video or an image is first encoded by a 3DVAE [Yu
et al. 2024b], resulting a latent visual sequence x € RT*3*HxW
(T = 1if it’s an image). The visual sequence is tokenized into
patches, yielding a set of visual tokens £ € RKXP, where T, H, and
W correspond to the temporal and spatial dimensions of the video,
K represents the total number of tokens, and D denotes the feature
dimension. Being a text-conditioned model, it requires text prompts
c that we encode using a pre-trained model [Radford et al. 2021]
and map into the same feature space D by an embedding layer. As a
decoder-only transformer architecture, the embedded text tokens
are concatenated with the noised visual tokens. The transformer
fo(%s; ¢, t) operates on these inputs, denoising the visual tokens at
each timestep ¢. The denoised tokens %y € RK*P are subsequently
decoded and reassembled into the visual data x, € RT3XHXW yiaq
linear layers, and finally decoded as videos or images.

To preserve the generalization ability of the finetuned t2v model
across diverse prompts, we curate two carefully selected datasets: (1)
a 360° video dataset capturing static indoor environments, and (2) a
360° image dataset featuring a wide range of real-world scenes. We
also incorporate a masked diffusion loss, which is key to ensuring
artifact-free generation.

3.2.1 360°video dataset. We start by collecting a 360° video dataset
with approximately 1,700 panoramic videos. Each video is captured
by a person holding a Ricoh Theta Z1 camera walking inside a nearly
static indoor scene to ensure the quality of 3D scene reconstruction.
Each video has around 50 seconds of capture, yielding roughly 1,500
frames. To build a dataset for training, we segment the longer video
sequences into smaller chunks, typically a 128-frame video clip
(5.3/10.6 seconds at 24/12fps). We use LLaVA [Liu et al. 2023a] to
generate detailed captions describing each scene.

3.2.2  360° image dataset. However, as the 360° video data is primar-
ily captured indoors to ensure a static environment with no moving
objects during the capture process, this may bias the fine-tuned
model, limiting its ability to generalize effectively to outdoor envi-
ronments. To mitigate this issue, we gather another dataset with
around 200,000 panoramic images taken with cameras on a tripod,
without the photographer in the scene. We caption each image with
Blip-2 [Li et al. 2023a] to describe the whole scene in detail. These
stationary images, captured in-the-wild, represent a much broader



variety of scenes, thereby enhancing the generalization capability
of our video diffusion model.

3.2.3 Mixed Training with Masked Loss. We combine the two de-
scribed datasets to train our model, enabling the text-to-360° video
generator to produce both 360° videos and images, with images
treated as single-frame videos. While panoramic images depict a
clean environment without the photographer present, the 360° video
capture often includes the photographer visible in the scene. This
causes the trained model to produce camera operators in its outputs
(see Fig. 4), complicating subsequent reconstruction steps. Hence,
when training our diffusion models on video data, we introduce a
masked diffusion loss, where the photographer is excluded from the
loss computation.

To achieve this, we preprocess all 360° videos by masking out
the photographer using a pretrained image segmentation model
[Adobe 2025] on each frame in a video. For a 128-frame chunk, we
merge all segmentation masks to minimize segmentation errors
and ensure a clean region without the person. Additionally, we
conservatively mask out the bottom region of the equirectangular
panoramic frames to eliminate visible camera equipment and the
photographer’s hand. Assuming the corresponding binary mask M
is resized into the latent space by nearest neighbor interpolation,
the masked diffusion loss is computed as

Expaaat~U(01) [IM O (€ = fo(Rese, )], (1)

where €; is the sampled noise at timestep ¢, and M has the same
dimensions as €;, where M[i, j] = 1 includes the region in the
loss calculation, and M[i, j] = 0 excludes it (indicating the visible
person).

Our video generator is finally trained on a mix of 1/3 image data
and 2/3 video data, achieving an empirically reasonable balance.
The video diffusion model generates a 128-frame video clip at 12 fps,
equivalent to a 10.6-second 360° capture video at a native resolution
of 352x704 pixels. We further apply a pretrained GAN-based video
upsampler [Wang et al. 2018] to super-resolve our generated videos
4 times, resulting a final 360° video of 1416x2832 resolution.

3.3 Reconstruction from “Generated” Captures

Given the generated 360° capture video with 128 panoramic frames,
we reconstruct a 3D Gaussian scene. For each panoramic frame,
we randomly perform 3 perspective crops with a field of view of
120° and resolution of 512x512, resulting in 384 perspective images
for pose estimation and reconstruction. Similar to standard scene
reconstruction, we calibrate the camera poses of these perspective
images using COLMAP [Schonberger and Frahm 2016]. The high av-
erage matching ratio 94.6% from COLMAP estimation demonstrates
the strong view consistency of the generated videos from our text-
to-360° video generator. We adopt Long-LRM, the state-of-the-art
feed-forward 3DGS reconstructor [Ziwen et al. 2024] to reconstruct
the final 3D scene using the estimated camera poses and generated
views. Using Long-LRM allows us to achieve fast reconstruction
compared to an optimization-based approach. We randomly subsam-
ple 32 random views along the original camera path as the inputs
since the Long-LRM has a maximum limit for input views. The
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calibrated camera poses from COLMAP are converted into Pliicker
rays as the inputs for long-LRM.

3.4 Implementation Details

We fine-tune a pretrained text-to-video diffusion model using mixed
360° image and video datasets. The fine-tuning is conducted on 32
NVIDIA A100 GPUs with a mixed fps training schedule (12fps and
24fps). The model was finetuned from a pretrained text-to-video
checkpoint for 20,000 steps in around 200 hours. During inference,
we generate videos at 12 fps to extend the traversal range while
maintaining good temporal consistency comparable to 24 fps gener-
ation.

The inference of a 10.6-second video takes around 10 minutes
with an unoptimized PyTorch runtime [Paszke et al. 2019] using
50 diffusion steps, together with the video upsampling process.
The entire reconstruction takes around 5 minutes, including pose
estimation and Long-LRM reconstruction. Our full 3D generation
pipeline requires approximately 15 minutes to generate a detailed GS
scene, with potential for further optimization to improve inference
speed and efficiency for different components.

4 Results

By generating 360° video capture, we demonstrate that our pipeline
achieves state-of-the-art quality in 3D scene generation (Sec. 4.2),
offering significantly improved view coverage, traversability and
coherent global visual content. This is primarily due to a strong 360°
video generator for scenes (Sec. 4.1). To quantitatively evaluate our
method, we prompt ChatGPT [OpenAl 2023] to generate a list of 320
descriptions of 3D scenes. Using this in-the-wild test set, we conduct
systematic comparisons against existing methods, demonstrating
superior video and 3D scene generation quality through both visual
examples and quantitative metrics. More visual examples can be
found in the supplementary material.

Additionally, we perform ablation studies in Sec. 4.3 to evaluate
our design choices, including mixed data training and masked loss,
to ensure the generation of high-quality videos suitable for artifact-
free 3D scene reconstruction.

Table 1. We quantitatively evaluate our method against the state-of-the-art
(SOTA) 360° video generation model [Wang et al. 2024]. We report CLIP
distance (CLIP) for prompt alignment quality, Q-Align score for image
quality, VBench for aesthetic/imaging quality, and COLMAP Failure Rate
(COLMAP-FR) along with Matching Rate (COLMAP-MR) for multi-view
consistency. The metrics are computed on the generated 360° frames across
320 test text prompts. Quantitative metrics across multiple dimensions
demonstrate that our generated 360° videos achieve high visual quality and
can be reliably used for 3D scene representation and reconstruction.

CLIP| Q-Align] VBench] COLMAP-FR| COLMAP-MR]
360DVD 07643  0.6704  0.538/0.661 89.7% 41.8%
Ours 0.7387  0.8334  0.615/0.717 0% 94.6%

4.1 Text-to-360°-Video Generation

A 360° video generator that accurately reproduces the distribution
of real-world video captures is key to making it a sufficient proxy
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Fig. 3. Comparison of 360° video generation results. We present a comparison of 360° panoramic video generation results against 360DVD [Wang et al.
2024]. Our generated videos exhibit significantly better visual quality and prompt alignment. We manually mark an anchor region with a green box in the 360°
image, highlighting the substantially longer traversal range of our generated videos. Stronger parallax is important for accurate 3D reconstruction.

Table 2. We quantitatively evaluate our method against several text-to-
scene models, including [Chung et al. 2023], [Zhou et al. 2024], and [Yang
et al. 2024]. To assess prompt adherence and visual quality, we compute
CLIP distance and Q-Align metrics on the generated 360° images or frames
across 320 test prompts randomly generated by ChatGPT. Note that Lu-
cidDreamer is an image-to-scene generation model which requires both
text and image as inputs, and we generate the initial image using ChatGPT;
therefore CLIP and Q-Align score evaluating the panorama synthesis quality
is not applicable for LucidDreamer. Our method outperforms all baselines
across these evaluations. Furthermore, we conduct a 4AFC user study to
assess three key aspects of scene quality: Realism/Completeness/Traversal
Consistency and report the selection percentages.

CLIP]  Q-AlignT Real.T  Complete. T  Consist. T
LucidDreamer N/A N/A 21.0% 10.0% 10.0%
DreamScene360  0.8116 0.8074 7.0% 6.0% 6.0%
LayerPano3D 0.7977 0.8312 34.0% 25.0% 29.0%
Ours 0.7387 0.8334 38.0% 59.0% 55.0%

for 3D scene representation. Our generation model can generate
spatial-temporal consistent 360° panoramic videos, exceeding the
quality of the state-of-the-art panoramic video generation models.
We compare our 360° video generation results with 360DVD [Wang
et al. 2024] in Fig. 3. We showcase four evenly sampled frames
comparing 360DVD and our 360° panorama video generation model.
Our model generates videos that closely match the input text prompt
and produce more realistic scene details compared to 360DVD. In

Table 1, we evaluate generation quality across multiple axes, where
our generator consistently outperforms previous SOTA in common
image/video generation quality metrics e.g., CLIP [Radford et al.
2021], Q-align [Wu et al. 2023], VBench [Huang et al. 2024].

Additionally, videos generated by our model cover a broader scene
span compared to 360DVD, which exhibits only slight rotations and
translations of the viewpoint as indicated in the marked green box
(Fig. 3). More importantly, since the primary goal of 360° panoramic
video synthesis is to generate a coherent 3D scene, the quality of
360DVD’s results prevents it from effectively accomplishing this
task. Its outputs lack structural consistency across views, exhibiting
continuous morphing and noticeable changes, which undermine
the perception of a stable 3D environment.

To validate this statement, we run COLMAP on their generated
panoramas using a similar cropping and pose estimation procedure
as described in Sec. 3.3. As shown in Table 1, we find that the failure
rate of COLMAP reaches 89.7% (COLMAP-FR), and even in cases
where COLMAP succeeds, the match rate (COLMAP-MR) remains
very low, with only 41.8% images being successfully matched, mak-
ing their results unsuitable for 3D reconstruction. In contrast, our
model preserves view-consistent local structures across frames. We
do not encounter any failure cases when running COLMAP, and
the average image match rate is as high as 94.6% across our test
prompts. This is the key reason our 360° videos can be a reasonable
3D representation for reconstruction.



A garden where every flower bloome in perfect circles, their petale reflecting the colors of the stare above.

w/o Masked Loss

.
.

<
-
=
=<

:
:

=

N
2
=

-

=
S

=<
7
<
=
e

L

z

w/ Masked Loss

Fig. 4. We conduct an ablation study to evaluate the impact of the masked
diffusion loss. This loss function effectively guides the model to generate
only the pixels of the scene, eliminating the moving photographer present
in the original video training data. As a result, it enables the generation of a
complete 360° scene capture for reconstruction.

4.2 Text-to-Scene Generation

As shown in Fig. 6, by chaining our 360° video generator with the
3D reconstruction process, we enable the creation of a diverse set of
3D scenes, allowing users to navigate the environment from novel
viewpoints and spatial locations. More results can be found in the
supplementary material.

In Fig. 7, we compare our results to the previous state-of-the-art
text-to-scene method that can also create 3D scenes. LucidDreamer
[Chung et al. 2023], an outpainting-based scene generation method,
synthesizes single-perspective views using an image diffusion model,
but suffers from global geometric distortions and lacks support for
full-view navigational experiences. Other methods that construct
3D scenes from panoramic images—such as DreamScene360 [Zhou
et al. 2024] and LayerPano3D [Yang et al. 2024]—provide 360° view
coverage, but do not enable truly navigable scenes, as significant
camera movement often breaks scene coherence. For all other meth-
ods, when synthesizing novel views (Novel View 1-4 in Fig. 7) from
positions different from the initial viewpoint, the rendered images
exhibit significant artifacts, including blurriness, missing regions,
and structural distortions. Similarly, we report the CLIP distance
and Q-Align metrics on the generated 360° images, demonstrating
that our method generates a 3D environment that more accurately
responds to user requests while achieving superior visual quality,
even at the initial position.

We argue that quality assessment is best conducted within the
context of a real navigation experience. To this end, we perform
a user study in which participants are presented with navigation
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Fig. 5. We verify that incorporating additional panorama image data helps
the model generalize to diverse environments. Without the image data, the
generated 360° videos not only exhibit degraded visual appearance but also
display messy and incorrect content at the bottom of the video. This issue
arises because these pixels lack supervision due to the masked loss.

videos generated by different methods. For each approach, we render
a short video clip simulating camera movement through the scene,
and ask users to select the most preferred result. Participants are
instructed to evaluate the methods using a four-alternative forced-
choice (4AFC) paradigm for the following dimensions: (1) Realism:
Realistic Visual (2) Completeness: No missing regions (3) Traversal
Consistency: Stable, distortion-free geometry during navigation.
We collect 20 responses and report the selection percentages in
Table 2. Our method received the majority of votes across all eval-
uation criteria, with particularly strong margins in Completeness
and Traversal Consistency.

4.3 Ablation Study

Training a high-quality 360° video generator within our 3D genera-
tive pipeline is a key factor in the success of our method, relying on
the use of mixed training data and the masked diffusion loss. We
conduct ablation studies on these design choices to demonstrate
their effectiveness.

4.3.1 Mixed Training Data. We conduct an experiment by excluding
the additional image panorama data. As shown in Fig. 5, incorporat-
ing image data significantly enhances the generalization capability
of the video generator across a wide variety of scenes, and improves
visual quality. Notably, due to the masked diffusion loss training,
ground-truth pixels in the bottom regions of the panoramic videos
are unavailable. The image data compensates for this limitation,
enabling the model to intelligently auto-inpaint the bottom regions,
resulting in a natural and realistic appearance.
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4.3.2  Masked Diffusion Loss. We also train a model using the full
diffusion loss applied to all pixels. The generated videos in this case
reveal the photographer and the camera pod, which consistently
appear in the 360° video training data (Fig. 4). This obstructs a signifi-
cant portion of the generated capture videos, making comprehensive
scene reconstruction challenging. By applying the masked diffusion
loss and incorporating the aforementioned image panorama data,
we guide the model to generate clean 360° videos that can be directly
used for perspective cropping and reconstruction.

4.4 Discussions and Limitations

The quality of our text-to-scene generation pipeline is constrained
by both the length and resolution of the panoramic video generative
model. On one hand, generating minute-long panoramic videos
while maintaining visual consistency across extended sequences is
essential for scaling to larger, more detailed 3D scenes. On the other
hand, panoramic videos allocate more pixels to capture global 3D
content and ensure spatial consistency, but this comes at the cost
of fine-grained details compared to perspective videos at the same
resolution. We address this limitation with an upsampler, though
a more fundamental solution would be a high-resolution video
generator.

5 Conclusion

In conclusion, we demonstrate that 360° video capture is an effec-
tive and practical representation for scene-level 3D generation, as
validated by WorldPrompter, a generative pipeline capable of pro-
ducing navigable 3D scenes from text prompts. By leveraging 360°
panoramic video generation as an intermediate representation, com-
bined with a fast 3D reconstruction module, the pipeline enables
the synthesis of immersive environments with comprehensive view
coverage and high visual fidelity. This scalable approach effectively
bridges the gap between text-to-3D generation and full-scene syn-
thesis. We expect this novel idea highlights a promising research
direction and has the potential to inspire future work in the field.
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Fig. 6. Scene generation results. We present our scene generation results by showing (1) the first 360° image from our generated panoramic video as
reference, and (2) novel video renderings (Novel View 1-4) from different spatial locations and viewpoints, demonstrating that our approach effectively
synthesizes a traversable, 360° viewable scene. More rendered videos can be found in the supplementary documents.
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Fig. 7. Comparison of scene generation results. We compare our method with LucidDreamer [Chung et al. 2023], DreamScene360 [Zhou et al. 2024] and
LayerPano3D [Yang et al. 2024] for text-based scene generation. LucidDreamer generates scenes progressively from a perspective images, synthesizing views
one at a time. DreamScene360 and LayerPano3D both use a single panorama as input to an image diffusion model, shown in the first column for reference. For
our method, we present the first frame of the generated 360° panoramic video as the reference image. While prior methods can produce visually reasonable
results at the initial viewpoint, their range of motion is limited. When synthesizing novel viewpoints (Novel View 1-4) that deviate significantly from the
starting position, their reconstructed Gaussian Splatting (GS) scenes exhibit severe artifacts, including blurriness, missing regions, and distorted geometries. As
a result, global structural consistency cannot be held. In contrast, our method produces scenes that remain well-aligned with the input prompt and maintain
high visual quality even at viewpoints far from the initial position.
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